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Abstract—Recently, intelligent sports analytics is becoming a
hot area in both industry and academia for coaching, practicing
tactic and technical analysis. With the growing trend of bringing
sports analytics to live broadcasting, sports robots and common
playfield, a low cost system that is easy to deploy and performs
real-time and accurate sports analytics is very desirable. How-
ever, existing systems, such as Hawk-Eye, cannot satisfy these
requirements due to various factors. In this paper, we present
MV-Sports, a cost-effective system for real-time sports analysis
based on motion and vision sensor integration. Taking tennis as
a case study, we aim to recognize player shot types and measure
ball states. For fine-grained player action recognition, we leverage
motion signal for fast action highlighting and propose a long
short term memory (LSTM)-based framework to integrate MV
data for training and classification. For ball state measurement,
we compute the initial ball state via motion sensing and devise
an extended kalman filter (EKF)-based approach to combine
ball motion physics-based tracking and vision positioning-based
tracking to get more accurate ball state. We implement MV-
Sports on commercial off-the-shelf (COTS) devices and conduct
real-world experiments to evaluate the performance of our
system. The results show our approach can achieve accurate
player action recognition and ball state measurement with sub-
second latency.

I. INTRODUCTION

Nowadays, the rapid advancement of mobile networks,
wearables, and artificial intelligence technologies is bringing
digital innovations to the sports arena. Many elite sports
clubs are using sports analytics to gain understanding of
their players’ performance for coaching, tactic, and technical
analysis. For example, the ProZone system has been installed
at Old Trafford in Manchester and Reebook Stadium in Bolton
for players’ motion analysis [1]. Besides professional clubs,
live sports broadcasting is adopting sports analytics to present
online game statistics to viewers [2]. With the coming robots
era, sports robots [3] developed to rival humans would also
benefit from sports analytics for prediction, decision making,
and motion planning. In these applications, real-time analysis
is indispensable. In addition, there is also a growing trend of
using sports analytics among amateurs on common playfield,
where an affordable and easy-to-deploy system is preferable.
Therefore, a low-cost system that performs real-time and accu-
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Fig. 1. MV-Sports’ working scenario. See text for more details.

rate sports analysis is very desirable and has many important
applications in real-world sports activities.

A majority of existing systems for sports analytics are built
with cameras [4], [S]. Hawk-Eye [6] is the most representative
technology that employs 6 to 10 high performance cameras to
equip the arena for 3D object tracking. The tracking results are
obtained seconds after the game and mainly used in replays
for commentators. Although Hawk-Eye has good accuracy, it
is too expensive to afford for common playfield. Besides, the
tracking is not real-time and thus is unsuitable for applications
that regard online analysis. Some systems embed wireless
sensors inside objects such as balls [7] to provide real-time
analytics. However, this is too intrusive for broad adoption.

In this paper, we propose MV-Sports, a cost-effective system
built on commercial off-the-shelf (COTS) wearable Motion
sensors and Vision sensors (i.e., cameras) for sports analysis.
We use tennis as a case study and aim to analyze movements of
both the player and the ball. Fig. 1 shows MV-Sports’ working
scenario in a tennis court. The setup is easy and non-intrusive
as the player only needs to don a wearable device and place
two cameras near each base line instead of modifying the
ball or racket. The rationale for using both motion and vision
sensors is their complementary characteristics [8], [9]. The
motion data (M) data is more lightweight and the visual data
(V) is more precise. By integrating M and V data, MV-Sports
has great potential to achieve real-time and accurate analysis.

In our case study, we first aim to analyze players’ shots,
which entails recognizing players’ fine-grained actions such as
serves, forehands, backhands, etc. The motion-based approach
is fast, but not robust due to the noise caused by successive
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movements. Visual data can provide more accurate analy-
sis thanks to their rich content. However, visual processing
is more time-consuming, especially for differentiating fine-
grained actions. To achieve fast and accurate action recogni-
tion, we first leverage motion signals to quickly highlight the
meaningful content for action detection, avoiding redundant
processing. Then we integrate the highlighted M and V data
via a uniform neural network to train an end-to-end model
for classification. To capture spatiotemporal information of the
action, we use a long short term memory (LSTM) network to
learn M and V features.

The second task is to continuously measure ball states,
including ball position, speed, and spin. Two preliminary
approaches can be used for ball state tracking. The ball motion
physics-based method is robust against environmental noise,
but requires accurate initial state, which is difficult to measure.
The vision positioning-based technology is able to quickly
rectify the noisy initial state, but sensitive to environmental
factors especially when using COTS cameras under practical
constraints. To closely integrate the results from the two
methods for more accurate tracking, we formulate the ball state
tracking as an extended kalman filter (EKF) problem with in-
formation extracted from both tracking methods. Specifically,
we measure the initial ball state based on M data and use it to
initialize the ball motion physics-based tracking. Meanwhile,
we use the observed ball positions from V data to update EKF
for more accurate ball state measurement at each point in time.

We prototype MV-Sports in a tennis court on commodity
wearable devices and RGB cameras with one laptop as the
back-end. We conduct extensive experiments to recognize five
typical actions in tennis: forehand topspin, forehand slice,
backhand topspin, backhand slice, and serve. Results from
2,500 video clips and corresponding motion samples achieve
average classification accuracy of 98%, which outperforms
conventional pure motion-based or pure vision-based methods.
For ball state measurement, we evaluate MV-Sports over 100
different shots with 40,000 video frames. The results show
that our system achieves median errors of 0.5 m/s for speed
measurement and median errors of 40 revolutions per minute
(RPM) for spin measurement. Both player action recognition
and ball state measurement are conducted with sub-second
latency, which is real-time. All the results demonstrate the
effectiveness and efficiency of our system.

In this study, we claim the following contributions:

e We design MV-Sports, a low cost system that is easy to
deploy and provides real-time and accurate sports analysis.

e We propose a deep learning-based framework to integrate
motion and visual data for fast and accurate player action
recognition. Besides, we devise an EKF-based approach to
formulate ball state measurement and combine motion and
visual data for precise ball state tracking.

e We implement MV-Sports in a tennis court with COTS
devices. Extensive real-world experiments are conducted to
evaluate MV-Sports’ performance and the results demon-
strate the accuracy and efficiency of our system.

In summary, we have developed a cost-effective sports
analysis system by integrating motion and vision sensors.
Although in this work, we focus on two tasks in tennis,
player action recognition and ball state measurement, our
methodology can be used to obtain more information such
as player action consistency and intensity. Besides tennis, our
MV-Sports can be easily extended to other sports with modest
modifications, such as golf, baseball, volleyball, badminton,
and table tennis.

The remainder of the paper is organized as follows. Section
IT reviews related work. Section III elaborates the design of
MV-Sports system. Section IV presents the system implement-
ation and reports our experimental evaluation. Finally, Section
V concludes the paper.

II. RELATED WORK

In this section, we describe three categories of related
research work.

Sports Analysis Systems: Many sports analysis systems
have been built in both industry and academia. For example,
Hawk-Eye [6] uses high-speed cameras installed around the
field to track ball movements. Bagadus [4] integrates a video
capturing system with a sports tracking system for soccer
game analytics. In [10], the authors focus on ball detection
and tracking algorithms for soccer video analysis. Chen et
al [11]. leverage physical characteristics to assist ball trajectory
reconstruction for basketball and volleyball video analysis.
Babolat [12] and Sony [13] present the tennis player an
overview of the game by analyzing data collected from sensors
in the racket handle. iBall [7] embeds inertial sensors and
ultrawide band radios inside balls and players’ shoes for ball
tracking and spin analysis in cricket. Zepp [14], a startup
in this area, has developed several mobile applications for
baseball, softball, golf, and tennis game analysis based on
sports sensor data. Unlike these systems, we aim to build a
low-cost system that is easy to deploy and performs real-time
and accurate sports analysis.

Deep Learning-based Action Recognition: There is a large
body of work on vision-based human activity analytics [15]—
[18]. Karpathy et al. [15] extend convolutional neural networks
(CNNis) for large scale sports video classification. Work in [16]
uses deep 3-dimensional convolutional networks for spatiotem-
poral feature learning in video analysis. The authors in [17],
[18] utilize the two-stream CNN architecture that incorporates
spatial and temporal networks for action and gait recognition
in video data. There are also works on motion-based action
recognition. Guan et al. [19] employ deep recurrent LSTM net-
works for action recognition using wearable sensing data. To
enable on-node real-time activity classification, Ravi et al. [20]
propose a deep learning approach that combines features
learned from inertial sensor data with engineered features.
DeepConvLSTM [21] presents a deep learning framework for
activity recognition by combining convolutional and LSTM
recurrent layers.

Continuous Ball State Tracking: Various approaches have
been proposed in the literature for tracking the small, fast-
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Fig. 2. System workflow of MV-Sports.

moving ball. Yan et al. have conducted a notable work in
this area. They leverage enhanced low-level features and a
modified particle filter for tennis ball detection and tracking
in low quality sports videos [22] and employ a layered data
association method that exploits graph theory for ball tracking
in cluttered environments. Work in [23] scores and filters all
possible ball trajectories based on their lengths and relation-
ships in a timeline model. Authors in [24] explore trajectory
reconstruction by approximating ball travel on tilted planes
for ball position measurement. Recently, machine learning has
also been exploited for automatic ball tracking such as random
forest and neural networks.

III. MV-SPORTS DESIGN

In this section, we first illustrate the workflow of our MV-
Sports system. Next, we discuss the main components in our
system.

A. System Overview

As shown in Fig. 2, our system consists of two main com-
ponents: player action recognition and ball state measurement.

— Player Action Recognition: The purpose of this com-
ponent is to identify the player’s shot types such as serve,
forehand, backhand, etc. We first process the motion sensor
readings to identify the meaningful samples that represent
the performed action. Next, we highlight and segment the
corresponding video frames in the same time period for further
analysis. This method of action highlighting in video data
is fast with the help of the lightweight motion data. For
action recognition, the meaningful motion data samples and
video frames are together fed to a neural network for feature
extraction, training, and classification.

— Ball State Measurement: Besides analyzing the player’s
actions, MV-Sports also measures the ball’s state including ball
position, speed, and spin at each point in time. We first mea-
sure the ball speed and spin when the ball is hit by the racket
using the motion sensor data. Next, we use the initial state to
initialize the ball motion physics-based tracking. Meanwhile,
we also perform ball detection and localization on continuous
video frames for vision-based tracking. Both tracking results
are then fed to the EKF for ball state measurement with higher
accuracy.
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Fig. 3. The raw 3-axis accelerometer M-Stream samples, the smoothed stream
with mean filter, and the amplitude of highlighted action segmentation results.

B. Player Action Recognition

To recognize player’s actions, we first leverage motion data
to highlight meaningful actions. Then we combine both the
motion and the video data for accurate action recognition.

1) Highlighted Action Segmentation: The very first step for
player action recognition is to highlight actions. Currently,
most camera-based systems mainly rely on high-level event
detection methods or low-level features such as optical flow
for video highlighting. However, these approaches are not
only time-consuming for real-time sports analytics but also
too coarse to capture the most meaningful content. In MV-
Sports, we explore the motion sensor-based action detection
to highlight actions with an adaptive thresholding strategy in
motion data streams. Our solution includes two stages. The
first stage is highlight sensing. Specifically, we use a sliding
window of size W to compute the accumulated amplitude of
3D accelerometer signals:

t+W

Aty ="

t

Va2 +a®) + a(t)? (1)

where a(t);, a(t)y, and a(t), are recorded 3-dimensional
acceleration streams, named M-Stream, at time ¢. We set a
threshold A;;,. When A(t) exceeds Ay, the samples within
the window are highlighted to represent an action. Based on
our real-world experiments, we set A;, as 10x the average
amplitude in the window of size W. In our implementation,
the sampling frequency of motion sensors is 100 Hz; hence we
set the sliding window size W to be 150 samples, which is
long enough to capture a complete action. The second stage
is action segmentation, where we first calculate the second
order derivative of the above highlighted M-Stream. We call
the result as dM-Stream. The dM-Stream point whose value
equals zero corresponds to the peak point in the real-world
action. With the obtained peak point, we segment M-Stream
using the peak point as the center with W samples, resulting in
the start and end points of the action. Algorithm 1 presents the
pseudocode for the overall solution. Fig. 3 shows M-Stream
samples and segmented results. As video data are synchronized
with the motion data, actions in video data can be quickly
highlighted using the timestamps (i.e., point in time) of the
start and end points. According to our experiments on 2,500
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Algorithm 1 Action Highlight with Motion Stream
1: Compute the filtered motion stream
2: Compute the accumulated amplitude A(t) of M-Stream at
time ¢ based on Eq. (1)
if A(t) is larger than Ay, in the window of size W then
Compute the dM-Stream
Find zero value in the dM-Stream as the peak point
Segment signals with window W to get start point and
end point of highlighted action
end if
: return Start point and end point

AN

® 3

action clips, MV-Sports achieves 99.6% action segmentation
accuracy.

2) Conventional Action Recognition: For action recogni-
tion, there are two conventional approaches: motion-based and
vision-based. The motion-based approach entails extracting
hand-crafted features from 3D accelerometer and 3D gy-
roscope data. More specifically, we extract motion features
separately from each axis, and then concatenate them as a
feature vector for further classification. Although the motion-
based method proves to be a promising solution for human
action recognition in the literature, it cannot be applied directly
in accurate sports analytics for the following reasons. First,
motion information can only be treated as low-dimensional
temporal data, which are not robust on wide varieties of sports
action. Second, successive movements in the action add much
noise into raw motion data. Third, the trained model does
not work well for players on whom it has not been trained
as motion patterns vary among different people. For vision-
based action recognition, existing approaches applied to sports
are limited. They suffer from performance degradation when
differentiating fine-grained actions. This is especially true for
sports such as tennis where the variations observed among
different shots (backhand and forehand) or sub-types of a
shot (forehand topspin and forehand slice) are subtle, making
automatic action classification extremely difficult. In order to
solve these problems, we propose a deep learning-based MV
integration framework for action recognition.

3) Deep Learning-based MV Integration Framework: We
choose LSTM, a variant of recurrent neural network (RNN), to
integrate MV data for action recognition. LSTM is well known
for its superiority in capturing long-term temporal information
in various tasks such as natural language processing and video
action recognition. Besides, the types of data precessed by
LSTM can be one-dimensional signals, text, images, or videos,
which provides more opportunities to bridge the “domain gap”
between motion and vision data. Thus, the LSTM network is
suitable for MV data-based action recognition in the context
of this work.

Fig. 4 gives an overview of our proposed LSTM-based
MYV integration framework for action recognition. First, we
locate the moving player in the given video frame at each
time point with aggregate channel features (ACF) [25]. Then
we utilize the deep convolutional neural network (CNN) to
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Fig. 4. The LSTM-based MV integration framework for player action
recognition.

extract spatial visual representations. After that, we feed the
extracted visual features and the corresponding hand-crafted
M-Stream features at each time point into the LSTM network
for further training. Next, LSTM learns combined motion and
vision features to capture long-term temporal information of
player’s behavior in the real-world environment. Finally, the
softmax loss layer is used for action pattern classification. In
the following, we describe each part in details.

Spatiotemporal Feature Extraction: The vision-based fea-
ture generation includes two parts: player localization and
feature extraction. In our framework, we first employ the ACF
detector [25] to locate the player within a bounding box in
each frame because of its good balance between efficiency and
performance. Note that if multiple people exist in the camera
view, a motion and vision integration-based method [26] can
be used to accurately identify the target player with motion
wearables. Secondly, we exploit CNN as the feature extractor
to obtain visual clues in the bounding box. Specifically, we
take Caffe-BLVC model [27] to initialize the network and
employ the network architecture discussed in [28] to extract
expressive spatial visual information. For the entire time period
of one action with /N frames, we fetch the activation in the
fully-connected layer 7 in AlexNet [28] for each frame as the
final visual features. For motion signals, we compute the 27-
dimensional statistical feature vector as described in [20] for
the 6-axis M-stream.

Spatiotemporal Information Integration and Training: We
first briefly introduce LSTM for those unfamiliar with this
technique. The LSTM networks were initially proposed to
tackle the vanishing and exploding gradients problem. LSTM
networks have special cells that contain four main components:
an input gate, a neuron with a self-recurrent connection, a
forget gate, and an output gate [29]. The input gate updates
the state of the memory cell or blocks it according to the
input data. The self-recurrent connection ensures that the state
of a memory cell has feedback with a delay of 1 time step.
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The forget gate allows the memory cell to remember or forget
its previous state by adjusting its self-recurrent connection.
Finally, the output gate can allow the state of the memory cell
to have an effect on other neurons or prevent it. In summary,
they enable the LSTM unit to learn extremely complex and
long-term temporal dynamics.

Mathematically, at time ¢, x* and h’ are the input and
output vectors, respectively. In our case, x! is the combination
of motion and visual feature vectors and h’ contains the
integrated MV information. W is the input weighted matrix,
R is the recurrent weighted matrix, and b is the bias vector.
The o(-) and tanh(-) are nonlinear activation functions, which
map real values to (0,1) and (—1,1). The ® and & denote
the dot product and the sum of two vectors. When given x?,
h'~! and c'~!, the updating functions in the LSTM cell are
as follows:

t

g’ = tanh(w,x' + R;h'™! + b)
it = o(w;x' + R;h'™! + by)

f' = o(wyx' + Ryh' ™! + by)
d—gloit+clof

o' = o(wox' + R,h'™! +b,)

h’ = tanh(c’) ® o’.

2

For action recognition, we aim to learn a nonlinear function to
separate the feature space into several subspaces according to
the number of categories. Therefore, we apply the softmax loss
layer to connect the LSTM cells in the network. Our training
algorithm adopts mini-batch stochastic gradient descent for
optimizing the objective function. The training data are divided
into mini-batches. Training errors are calculated upon each
mini-batch in the softmax loss layer and backward propagated
to the lower layers; network weights are updated simultane-
ously. We use the “step” learning rate policy. We initialize the
learning rate to 10~* and Gamma to 10~!. Momentum and
weight decay are set to 9 x 107! and 5 x 10™4, respectively.

Online Action Classification: In the online testing stage,
the motion data are processed for generating motion features
and each video frame is sent into a CNN for visual feature
extraction. Next, the M features and V features together are
fed into the LSTM to compute the feed-forward network based
on matrix multiplication for classification. The whole scheme
is efficient, which is demonstrated in Section IV.

C. Ball State Measurement

Now we present our approach for ball state measurement.
Here, ball state includes ball position, speed, and spin and it
changes when the ball is flying or bouncing as the ball motion
is affected by several forces such as gravity and air drag. Thus,
the ball state is variable and we need to continuously track it
during the ball’s flight.

Two methods exist for tracking ball state. The first one is
based on ball motion physics. Ball state during the flight is
calculable, if given the initial state when the ball is hit by a
racket. As the ball flies, we can analyze the physical process
and calculate ball state at each timestamp. The initial state can
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Fig. 5. Initialization of ball speed and spin.

be determined by the motion of the racket, which is measured
by motion sensors. The accuracy in this method is heavily
affected by the accuracy of the initial state as all following
states are calculated from it. The initial state, however, cannot
be accurately measured due to noise from motion sensors.
The other approach is purely vision-based. Visual positioning
technologies can continuously track the ball’s 3-dimensional
location during its flight. As cameras can visually capture the
ball very rapidly (60 frames per second in this work), the
continuous positions of the ball entail its states over time.
However, visual positioning is very sensitive to environmental
factors such as lighting conditions. This method is not reliable
or robust in practical use.

In this paper, we measure ball state based on the integration
of motion and visual sensing. It has two stages. First, we
determine the roughly accurate ball state at the initial times-
tamp based on motion sensing of the player. Second, we adopt
both ball state tracking methods mentioned above and combine
their results optimally to produce accurate and robust tracking
result. On one side, as visual positioning works independently
at each timestamp, it is capable to cope with the noisy initial
ball state and quickly rectify it. On the other side, ball motion
physics-based calculation is robust to environmental noise.
Next, we show the two stages of ball state measurement.

1) Initial Ball State Measurement: Initial ball state is
determined by the impulse of the racket when it hits the ball.
Fig. 6 shows the physical process. As the hit lasts a very short
time [30], the force of the hit mostly decides the initial state.
When the player waves the racket and hits the ball, motion
sensors capture the force of the hit, which indicates the initial
ball state. Fig. 5 shows our experimental results on initial
ball state and motion sensing. The magnitude of initial ball
state has positive correlation with accelerations and rotations
of the player’s movement. By using polynomial regression, the
initial ball speed and spin can be roughly determined based
on the player’s motion sensor data. In addition, the orientation
of the initial ball speed can be computed by rotations of the
racket. The inaccuracy of initial state will be gradually reduced
later by our tracking approach. Note that tracking ball state
during its flight also requires the initial ball position. We obtain
initial ball position by visual sensing. As position, speed, and
spin (angular velocity) are three key variables _t()) our tracking
approach, we denote them at timestamp ¢ as P*, V¢, and wt,
respectively.

2) EKF-based Ball State Tracking: We use both ball motion
physics and visual positioning to track ball state. To obtain
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a more accurate result based on the two rough independent
measurements, we devise an EKF-based approach to optimally
integrate the two measurements and produce a result that is
closest to the “true” state. In the following, we first introduce
the two tracking methods used in MV-Sports, and then explain
how we combine their results to produce a better one.

The ball motion physics model requires the force analysis
of the ball. In this paper, we present the basic analysis result
based on aerodynamics studies whose details are given in [31],
[32]. During tracking, there are two physical processes, flying
and bouncing. When the ball is flying, it is affected by three
forces, gravity (F), air drag (Fp) and Magnus force (F)yy).
At timestamp ¢, they can be expressed as

t
o = =
FDt:—%pCDAHVt Vi 3)

where ||-|| is the L?-norm, m is the mass of the ball, g is
the acceleration of gravity, p is the air density, C'p is the air
drag coefficient, A is the effective cross-sectional ball area,
(', is the air lift coefficient, and D is the diameter of the ball.
The values of these constants can be found in [31]. Based on
Eq. (3), we can calculate the ball state iteratively. Denotﬂe

time period from ¢t —1 to ¢ as At and = FGt+FDt+F]£>.

If At is small enough, say 16 ms in our implementation, F}*
can be considered as constant. Then, we have

— P viiAL 1F1 —At?

7(-): vi— vyt 4 mTAt )
%
w' =Wt

when the ball is in flight.

Fig. 6 illustrates the physical process of the ball bouncing
on the ground. The friction between the ball and the ground
as well as the elastic deformation of the ball are main reasons
for the ball to lose horizontal and vertical kinetic energy,
respectively [32]. As the ball bouncing takes very short time
(usually less than 1 ms [32]), the change of ball speed and spin
can be considered as instantaneous. Let V' = [V, 'V, V,]T
where Vj is the ball speed in the j-axis, and V;* and V;° are
the ball speeds before and after bouncing, respectively. We
apply similar notation to ball angular velocity w and tangential
velocity on the edge u. Vertically, we have

V.0 = GV, Q)

IEEE Conference on Computer Communications

where Cj, is the bouncing coefficient. Horizontally, we de-
fine angle of incidence ¢ as the angle between ball speed
and the ground. Namely, § = arctan V" and Vay" =

Vay
v/ (V)2 + (V,")2. 0 decides the type of friction between the

ball and the ground. If it is lower than a threshold «, the
friction is sliding. Otherwise, it is rolling friction. For sliding,
we have

Viy® = V' — cfvi(1+cb) ©
u® — 5(1;—5%)6? +u

where C' is the friction coefficient. For rolling, we have

o _ 5Vey'+2u’
Vay” = e Cs
5Vay ' +2u’

o = ly7 Ct7

)

u

where C and C; are the coefficients for the ball speed and
the tangential velocity, respectively. Finally, we have

o _ Va'Vay
o __ VyZmeo 8
v, = Yatat ®)
_ u?
w’ =g,

where R is the ball radius. Cj and C are both decided by
the material of the ball and the surface of the ground. Their
values, as well as the value of «, can be found in [32]. We
empirically obtain the values of Cs and C} in our experiments.

When using visual positioning technology to track the ball
state, we first need to detect and localize the ball in video
frames. Then, based on camera projection model and computer
stereo vision theory [33], we can calculate the real-world
position of the detected ball in MV-Sports’ coordinate system
(shown in Fig. 1). Due to varying lighting conditions and other
practical factors, we cannot perfectly detect the ball in frames.
Multiple “ball” candidates are usually detected containing the
real ball as well as false positives. Besides, the calculated real-
world positions of detected balls also have certain degree of
error due to the motion blur caused by the ball’s fast speed.
These problems can be mitigated by our EKF-based tracking
approach.

We call visual-positioning-based measurement observation,
as it is obtained via cameras. We call ball-motion-physics-
based measurement prediction because it is purely based on
mathematical deduction. At every point in time, we apply
prediction to obtain a roughly accurate position of the ball.
It can identify the false positives of observation based on the
distance between predicted and observed positions. Then, we
employ the EKF to combine prediction and observation to
produce more accurate ball state. The accumulated error of
prediction can also be reduced.

Algorithm 2 shows our EKF-based approach to track)ball
st_a;e \ll)len the ball is flying. We formally define S' =
[Pt V! w7 as the ball state, and Ot as the observation

result of ball’s position, at timestamp t. S is updated every
timestamp. We also keep a posteriori error covariance matrix
Sgm! during the tracking. The basic steps of our approach are
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Algorithm 2 EKF-based Tracking at Timestamp ¢
— —

Slt=1 ¢ ?(St_ ) based on Eq. (4)
Sgmlt=1 « GSgm!~'GT + R

K« Sgm!*THT(HSgm"—1HT + Q)~!
- s

St Stlt—l —i—K(Ot _ Hst\t—l)

Sgm! %4[ — KH)Sgmtt=1

return S?, Sgm!

AN A A ey

as follows. First, we apply prediction to compute intermediate
variables S*1*~1 and Sgm!!*~!, where G is the Jacobian matrix

of f(-) and R is a diagonal matrix with empirical errors of

prediction on each element of S*~!. Second, we compute the
gain matrix of observation K, where

o 1 ifi=jNi€e[l,3

H(w){ [ ], 9

0 otherwise

and @ is a diagonal matr_i)x with empirical errors of observation
on each element of O!. Third, we use K to adjust the

prediction result St*~1 based on O' and the intermediate
covariance matrix Sgm!/*=!, where I is the identity matrix.
When the ball b%nces on the ground, we simply apply Eq. (5)-
(8) to update S® as bouncing happens instantly. We also
reset Sgm! to the zero matrix to restart new iterations on
Algorithm 2.

IV. IMPLEMENTATION AND EVALUATION

In this section, we present our system implementation,
report our experimental results on our MV-Sports system, and
show the system’s performance.

A. Implementation

The implementation has three main parts: a motion part
that collects and transmits motion sensor data of the player,
a vision part that shoots the entire arena and transmits the
video frames, and a back-end that receives M and V data and
processes them.

As shown in Fig. 7, we use a wearable motion tracking
device purchased from mbientlab [34] to capture motion data.
It is placed on the player’s wrist and provides 10 axes of
motion sensing (3-axis accelerometer, 3-axis gyroscope, 3-axis
magnetometer, and altimeter/barometer/pressure). In this work,
we only use the accelerometer and gyroscope data. Through
the SDK provided by mbientlab, we program the device to
capture 100 data samples per second and send the data to the
back-end through Bluetooth. For vision part, we use two cheap
USB cameras to collect video frames. We set the resolution
as 1280 x 720 pixels and the frame rate as 60 fps. Both
cameras are calibrated beforehand in the tennis arena [35].
We use a commodity laptop with one NVIDIA graphics card
as the back-end. It synchronizes and processes the M and V
data streams. The GPU is used for speeding up the image
processing and neural network-based action recognition.

(a) Camera sensor (b) Wearable motion sensor

Fig. 7. Vision sensor and motion sensor.

In order to validate the ball state measured by our system,
we need the ground truth ball state. We use a Bushnell-101921
velocity speed gun with 1 kph (0.28m/s) accuracy to measure
ball speed. To measure ball spin, we use a high-end camera
that captures the ball in flight with a frame rate of 240 fps.

B. Evaluation

We first evaluate the performance of player action recogni-
tion. Next, we evaluate the ball state measurement, including
ball position, speed, and spin. We present the results on two
metrics: accuracy and time cost.

1) Player Action Recognition: We collect samples for 5
typical tennis shots (i.e., forehand topspin, forehand slice,
backhand topspin, backhand slice and serve) from 10 volun-
teers. Participants include 1 female and 9 males with ages
ranging from 17 to 49 years old and heights ranging from 158
cm to 182 cm. Two of them are professional athletes and others
are amateurs. We let each player freely play with a pitching
machine and collect 50 samples for each action. Finally, with
our highlighted action segmentation algorithm, we collect a
large dataset including 2,500 video clips and corresponding
motion streams. For samples collected for a specific shot from
a specific person, we randomly pick 60% of them for training
and use the rest for testing. We repeat such process for 10
times and use the mean of the results as the output.

Accuracy of Overall Performance: Fig. 8 shows confu-
sion matrix for 5 actions according to overall classification
accuracy. As we can see, MV-Sports achieves an average
accuracy of 98.01% on player action recognition. For forehand
topspin, backhand slice, and serve, MV-Sports achieves an
average accuracy of 100%. We also observe that the accuracy
is lower for backhand topspin. After investigating the reason
behind this lower accuracy, we find that backhand topspin and
backhand slice have inconspicuous inter-class differences that
result in 7% topspin samples are incorrectly classified as slice.

Accuracy of Unseen User: To measure the accuracy of MV-
Sports on unseen users, for each volunteer in our dataset, we
test all samples collected from that volunteer using classifica-
tion models generated from samples of all other volunteers. As
shown in Fig. 9, MV-Sports achieves an average accuracy of
91.20% for actions performed by users it has not been trained
on. We can see that except one person, the accuracies for
unseen volunteers are all above 80% with small deviations.
This shows that MV-Sports is robust and unaffected by unseen
users.

Accuracy of Different Training Size: We evaluate the influ-
ence of the training data size by changing the percentage of
data assigned for training. We compare MV-Sports with the
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Fig. 8. Confusion matrix of player action Fig. 9. Accuracy of unseen users. Fig. 10. Accuracy of different training data size.
recognition.
Procedure MYV-Sports (ms/frame) Procedure MYV-Sports (ms/frame) | Vision-based (ms/frame)
Highlight Segmentation 0.2 Processing Time 10.3 10
Player Localization 5.0 TABLE II
Feature Extraction 16.2
- - - - AVERAGE PROCESSING TIME OF EACH FRAME OF BALL STATE
Online Action Classification 1.2
MEASUREMENT
Sum 22.6

TABLE 1
AVERAGE PROCESSING TIME OF EACH FRAME IN DIFFERENT STAGES OF
ACTION RECOGNITION

motion-based and vision-based methods. Fig. 10 shows how
they perform across different training data sizes. The results
validate that our framework outperforms the other two on all
training sizes. The motion-based and vision-based methods
can achieve comparable accuracy with MV-Sports when the
training data size is small, while MV-Sports yields better
results when given sufficient training data.

Processing Time: Table I lists average processing time for
different stages of action recognition. Added with the player
localization time (5 ms) and the feature extraction time (16.2
ms), it takes 22.6 ms to process one frame. This means that
the proposed method can process the sports videos and motion
signals in real-time.

2) Ball State Measurement: We compare MV-Sports with
a pure vision-based approach that visually localizes the ball
using the same cameras as MV-Sports. The pure vision-based
approach calculates the ball speed at each point in time by
dividing the ball’s displacement between two nearest positions
over their time duration. However, it cannot calculate ball spin.
The error is defined as the average difference between the
evaluated approach and the ground truth. The processing time
is the average time cost of processing at each time point. We
collect 100 ball trajectories with different initial speeds and
spins.
Accuracy of Ball Position: Fig. 11 shows the ball trajectory
measured by our system and the vision-based approach. We
can see that some positioning results of the vision-based
approach are highly unstable. Namely, some positions are
unusual and the curve they form does not follow aerodynam-
ics. Such error mainly comes from the light condition and
fast movements of the ball. MV-Sports, on the other hand,
produces reliable ball positions during the whole flight. Using
EKF-based approach that integrates MV data for ball tracking,
our system can rectify the unstable visual positioning results.
Thus, the trajectory obtained from MV-Sports is smoother,

which indicates that the ball positions of MV-Sports are more
accurate and reliable.

Accuracy of Ball Speed: Fig. 12 illustrates the speed error
distribution of two tracking approaches. The median error for
MV-Sports is around 0.5 m/s. It shows the high accuracy of our
system as the median error is close to the error of our ground
truth tool (0.28 m/s). Furthermore, our system is robust to
practical factors as the error is lower than 1.5 m/s for over 90%
of the trajectories. The pure vision-based approach, however,
has much higher speed errors and a wider error distribution
due to unstable positioning results. For 90% of the trajectories,
its error is only lower than 2.5 m/s.

Accuracy of Ball Spin: Fig. 13 reports the CDF for spin error
distribution of MV-Sports. The median error of our system
is 40 RPM, which means the measurement is accurate as
the normal ball spin is up to 1000 RPM. There are a few
trajectories where our system cannot measure ball spin in
a satisfying accuracy. It is mainly caused by the subtleness
of ball spin. Unlike intrusive approaches like iBall [7] that
embeds a motion sensor inside the ball, our system aims to be
non-intrusive and practical. Although we cannot directly sense
the ball spin, which raises certain inaccuracy, our system can
still achieve reasonable performance for normal use.

Processing Time: Table II shows the average processing time
for the two approaches at each time point. MV-Sports is 0.3
ms slower than the pure vision-based ball tracking. However,
such difference is very minor and the overall time cost for
MV-Sports is small enough to achieve real-time analysis.

V. CONCLUSION

In this paper, we presented MV-Sports, a cost-effective
system for real-time sports analysis based on motion and
vision sensor integration. As a case study for tennis, we aimed
to accurately recognize the player actions and measure the
ball state. For fine-grained action recognition, we leveraged
motion signal to assist action highlighting and proposed a
LSTM-based framework to integrate MV data for training
and classification. For ball state measurement, we obtained
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Fig. 11. Ball position tracking.

the initial ball state via motion sensing and devised an EKF-
based approach to combine ball motion physics-based tracking
and vision positioning-based tracking for more accurate ball
state measurement. We implemented MV-Sports on COTS
devices and conducted real-world experiments to evaluate the
performance of our system. The results showed our approach
can achieve accurate player action recognition and ball state
measurement with sub-second latency. In the future, we will
extend our system to other sports applications such as baseball
and badminton.
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