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Abstract
The integration of the latest breakthroughs in bioinformatics technology from one side and artificial intelligence from
another side, enables remarkable advances in the fields of intelligent security guard computational biology, healthcare,
and so on. Among them, biometrics based automatic human identification is one of the most fundamental and significant
research topic. Human gait, which is a biometric features with the unique capability, has gained significant attentions
as the remarkable characteristics of remote accessed, robust and security in the biometrics based human identification.
However, the existed methods cannot well handle the indistinctive inter-class differences and large intra-class variations of
human gait in real-world situation. In this paper, we have developed an efficient spatial-temporal gait features with deep
learning for human identification. First of all, we proposed a gait energy image (GEI) based Siamese neural network to
automatically extract robust and discriminative spatial gait features for human identification. Furthermore, we exploit the
deep 3-dimensional convolutional networks to learn the human gait convolutional 3D (C3D) as the temporal gait features.
Finally, the GEI and C3D gait features are embedded into the null space by the Null Foley-Sammon Transform (NFST). In
the new space, the spatial-temporal features are sufficiently combined with distance metric learning to drive the similarity
metric to be small for pairs of gait from the same person, and large for pairs from different persons. Consequently, the
experiments on the world’s largest gait database show our framework impressively outperforms state-of-the-art methods.

Keywords Gait recognition · Siamese neural network · Spatio-temporal features · Metric learning · Human identification

Introduction

Biometrics based automatic human identification is one
of the most fundamental and significant research topic
in bioinformatics and computer vision field. Among the
massive biometric authentication traits, the discrimination
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of human gait is strongly supported in the research of
biomechanics, physical medicine studies, and psychological
studies (Wang et al. 2003). As shown in Fig. 1, gait is
the walking posture of a person, comprising a regular
movement trend and variations present at joints of the upper
limbs and lower limbs during walking. Gait recognition is
a recognition technology based on biometrics (Ma and Liu
2017), and is intended to identify a person according to the
walking posture of the person. With the gait analysis, we
can accurately detect many biomedical information, such as
gender, age, race and the like, of a person to whom the gait
belongs can be obtained. Moreover, the gait information can
also be utilized to diagnose and cure many diseases, such
as Neurodegenerative Diseases (Ren et al. 2017; Xia et al.
2015), Parkinson’s disease (Samȧ et al. 2017), Huntington’s
Disease (Mannini et al. 2016), and so on. For the field of
recognition technology, gait is biometrics of great potential,
which mainly manifests in the following three aspects: 1)
remotely accessible: surveillant can obtain gait information
of a specific subject from a distance, and collect it secretly
in a contactless manner. Differently, the biometrics such
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as iris and fingerprint are collected with the need of a
person’s cooperation. The remote access is very important
in intelligent video surveillance. 2) Robustness: even in low
resolution videos, a gait feature still works well. In contrast,
an accurate face recognition (Chen et al. 2014; Chen et al.
2017) and vocal print recognition impose relatively high
requirements on the quality of data resources. 3) Security: it
is difficult to imitate or camouflage human gait. If a person
changes his/her gait in public deliberately, he/she would
become more suspicious and gain attention.

However, accurate gait recognition is still a challenging
work as 1) the unconspicuous inter-class differences from
different people; and 2) the large intra-class variations from
the same person as the different walking speeds, viewpoints,
clothing, and belongings. The detail challenges can be
summarized as: 1) complexity surveillance environments —
the human gait identification is very sensitive to cluttered
environments, illumination changes, partial occlusions, and
crowded people; 2) diverse subject-related factors — the
different walking speed, dressing, and carrying conditions.
all seriously influence the human gait and automatic
identification ; 3) the cross-view variance — the cross-
view variance leads to the appearances of human gait be
substantially altered, which will increase the intra-class
variations and decrease the inter-class variations.

Fig. 1 A complete cycle of the human gait. Besides humen
identification, the gait analysis can also be utilized to diagnose and
cure many diseases, such as Neurodegenerative Diseases (Ren et al.
2017; Xia et al. 2015), Parkinson’s disease (Samȧ et al. 2017),
Huntington’s Disease(Mannini et al. 2016), and so on

To solve these challenges, two kinds of gait recognition
methods are studied: model-based and appearance-based.
Model-based approaches (Ariyanto and Nixon 2011; Yam
et al. 2004) directly extract human body structure from the
images with higher resolution images of a subject as well
as higher computational cost. However, it is difficult to
precisely estimate model parameters from low quality image
sequences, which are captured from surveillance videos or
crime scenes. Differently, the appearance-based methods
(Han and Bhanu 2006; Iwama et al. 2012; Muramatsu et al.
2015; Sarkar et al. 2005; Sivapalan et al. 2013) mainly focus
on extracting gait features from captured image sequences
regardless of the underlying structure. Therefore, this kind
of methods can perform recognition at lower resolutions,
which makes them suitable for outdoor applications when
the parameters of the body structure are difficult to be
precisely estimated. Nonetheless, the human-crafted gait
features in the existed methods can extremely hard to break
through feature representation bottleneck when facing with
the gait and appearance changes of a walking person with
massive kinds of walking speed, viewpoint, clothing, and
carrying.

Recently, because of the powerful feature learning
abilities of deep neural networks, the data-driven deep
learning methods achieve the state-of-the-art performance
in plenty of fields (Gan et al. 2015; Hinton et al. 2012;
Liu et al. 2015; Krizhevsky et al. 2012; Sutskever et al.
2014; Wang et al. 2015; Yan et al. 2017a, b). For
example, the Convolution Neural Networks (CNN) can
automatically learn commendable features from the given
training images, which significantly improve the image
classification accuracy. Therefore, some deep learning
based gait recognition have been proposed to extract the
robust gait feature (Castro et al. 2016; Feng et al. 2016;
Wu et al. 2015; Zhang et al. 2016). CNN can automatically
learn gait signatures from low-level motion features (i.e.,
optical flow components), which achieves the state-of-
the-art performance in gait recognition. However, CNN
has only learned the short-term motion features between
adjacent frames rather than the periodic motion cue of
gait sequences. Moreover, to learn sufficient features, the
CNN requires a mass of training data for all the categories.
Conversely, in the area of gait recognition, the number of
subjects is very large (e.g., hundreds or thousands), with
only a few examples per subject (Iwama et al. 2012; Ma
et al. 2012; Sarkar et al. 2005; Yu et al. 2006). Besides,
gait recognition for human identification is not a typical
classification problem (Yuan et al. 2006; Zha et al. 2007).
Therefore, we cannot directly use CNN on gait recognition
as the huge domain gap between them.

Most of the widely-used gait recognition datasets provide
gait energy images (GEI) (Han and Bhanu 2006), which
are the average silhouettes along the temporal dimension.
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Unlike other gait representations (Bobick and Johnson
2001) which consider gait as a sequence of templates
(poses), GEI represents human motion sequence in a single
image while preserving some temporal information. As
an average template, GEI is not sensitive to incidental
silhouette errors in individual frames. There are many
alternatives for GEIs, e.g., chrono-gait images (Wang et al.
2010) and gait flow images (Lam et al. 2011). However, a
recent empirical study by Iwama et al. (Iwama et al. 2012)
shows that GEI, despite of its simplicity, is the most stable
and effective kind of features for gait recognition on their
proposed dataset with 4,007 subjects. Therefore, to solve
the data limitation problem of deep neural network training
in gait recognition, we use GEI instead of raw sequence of
human gait in this paper as the input of the network. As
removing most noisy information while keeping the major
human shapes and body changes during walking, the GEI
representation can help deep neural network quickly capture
the discriminative biometrics information in human gait.

However, the GEI average one cycle of the human
gait into one image, which undoubtedly loss most of the
temporal information. This makes the GEI still cannot
well handle the challenges of complexity surveillance
environments, diverse subject-related factors, and the cross-
view variance. As a motion pattern, the spatial and temporal
dimensionality of human gait are both very important.
The GEI models the spatial information in a gait cycle.
To sufficiently model the temporal information, we can
use the deep 3-dimensional convolutional networks (3D
CNN) to learn the human gait Convolutional 3D (C3D)
feature (Tran et al. 2015). The C3D can model appearance
and motion information simultaneously and outperform
the 2D CNN features on various video analysis tasks.
The features extracted by these 3D CNN encapsulate
information are generic, compact, simple and efficient.
However, the original C3D features are trained by the video
classification, which have huge domain gap with human gait
recognition. In particular, aiming to further learn sufficient
feature representations to tackle gait recognition for human
identification, we exploit the 3D CNN based Siamese neural
network (Bromley et al. 1993; Chopra et al. 2005), which
can simultaneously minimize the distance between similar
human gaits and maximize the distance between dissimilar
pairs with a distance metric learning architecture.

Motivated by the above observations, and aiming to
address the aforementioned gait recognition challenges, we
proposed a Siamese neural network based gait recognition
for human identification. First of all, to solve the data
limitation problem, and holistically exploit the spatial-
temporal information, we use GEI and C3D instead of raw
sequence of human gait as gait feature. The GEI and C3D
features are both extracted by a trained siamese neural
network. With the well-learned gait spatial and temporal

features, the Null Foley-Sammon Transform (NFST) is
exploited to combine the two different features from spatial
space and temporal space respectively. The NFST is one
type of metric learning methods, whose goal is to learn a
projection matrix W to map the different features into a
latent metric null space. In the null space, the distances
of features from the same object are much smaller than
those of features from different objects. After that, the K-
Nearest Neighbor (KNN) method (Muja and Lowe 2012;
Liu et al. 2014) is exploited to identify the same person in
surveillance environment with the combined features in null
space. Finally, the evaluations on the world’s largest and
most comprehensive gait benchmark dataset demonstrate
that the proposed method can impressively beyond state-of-
the-art methods both in intra-view and inter-view gait-based
human identification.

In contrast to our previous works [14], we propose a
spatial-temporal Siamese Neural Network based gait recog-
nition for human identification with GEI and C3D. The
GEI chiefly represents the spatial information. By con-
trast, the C3D mainly represents the temporal information.
To combine the spatial-temporal information together, we
exploit the NFST to embed the GEI and C3D features
into the null space to eliminate the domain gap. Com-
pared with the previous system, we can achieve 17.28%
Rank-1 accuracy improvement in the inter-view human
identification. Moreover, we add the related work section to
give more comprehensive literature survey and motivations
from the perspective of a trade-off between current tech-
niques. To evaluate the adaptation ability of the proposed
gait recognition performance under different conditions, we
conduct extensive experiments on two popular gait recognition
datasets.

In summary, this paper makes the following contributions:

– In the end-to-end framework, we leverage the competi-
tive GEI and C3D presentation as the input of network
while holistically exploit the Siamese neural network
to learn effective feature representations for human
identification.

– We propose to exploit the NSFT to embed the GEI and
C3D features into the null space to fuse the spatial-
temporal information.

– The comprehensive evaluations show that we impres-
sively outperform the state-of-the-art methods on the
challenge gait benchmark dataset.

RelatedWork

As a burgeoning biometric identification technology, gait
recognition attracts extensive attention due to its huge
potential for automatic, remote accessed, robust, and
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security human identification applications. A typical gait
recognition framework contains five main components —
1) gait data acquisition; 2) gait data preprocessing; 3)
gait cycle detection; 4) gait feature extraction; and 5) gait
classification and matching. In this paper, we mainly focus
on the last two steps. According to the feature presentation,
we can classify the existing method into two categories:
model based methods and appearance (i.e., mode-free)
based methods. In this section, we review related research
on gait feature extraction and gait matching, which are
closely related to our work.

Gait Recognition

According to the feature presentation, we can classify
the existing methods into two categories: model-based
(Kusakunniran 2014; Lombardi et al. 2013; Nie et al. 2015;
Sigal et al. 2012; Urtasun and Fua 2004; Wang et al. 2014;
Wang et al. 2004; Yam et al. 2004) methods and appearance-
based (i.e., mode-free) (Lam et al. 2011; Makihara et al.
2012, 2016; Muramatsu et al. 2015; Sarkar et al. 2005; Tao
et al. 2007) methods.

Model-based approaches directly extract human body
structure from gait sequences with higher resolution as
well as higher computational cost. For example, Yam
et al. designed two new models for modeling the leg
motion of walking and running, which were used to
extract gait feature (Yam et al. 2004). Urtasun et al.
developed a tracking algorithm for identifying people and
characterize their gait information (Urtasun and Fua 2004).
Kusakunniran et al. proposed a new method to detect
the Space-Time Interest Points (STIPs) where there are
significant movements of human body along both spatial
and temporal directions in local spatio-temporal volumes of
a raw gait video (Kusakunniran 2014). Wang et al. proposed
a visual recognition algorithm based upon fusion of static
and dynamic body biometrics for gait recognition (Wang
et al. 2004). In addition, precise estimating human pose is
helpful for the feature extraction of gait images. Sigal et
al. introduced a benchmark for measuring the performance
of human motion estimation and designed a graphical
model for representing the position and orientation of limbs
(Sigal et al. 2012). Wang et al. proposed a method of
estimating 3D human poses from a single image, which
works in conjunction with an existing 2D pose detector
(Wang et al. 2014). Nie et al. integrated action recognition
and pose estimation into a framework, as the two tasks are
closely related tasks for understanding human motion in
videos (Nie et al. 2015). Zhang et al. presented a method
to estimate a sequence of human poses in unconstrained
videos, which could enforce the intra- and inter-frame body
part constraints respectively without extra computational
complexity (Zhang and Shah 2015). As model-based

methods typically estimate the motion of the limbs, they are
insensitive to viewpoint changes. However, it is extremely
difficult to precisely calculate model parameters due to the
low quality image sequences captured from surveillance
videos in many situations.

On the other hand, appearance-based approaches extract
gait features directly from captured image sequences. The
major advantage is that they avoid the estimation of a latent
model. We focus on appearance-based approaches in this
paper. GEI (Han and Bhanu 2006) is an efficient spatio-
temporal gait representation approach, which was proposed
to characterize human walking properties for individual
recognition by gait. Optical flow (Hu et al. 2013; Lam
et al. 2011; Makihara et al. 2012) is widely adopted, which
can provide a better avenue for representing gait body-
shape invariant. For example, Makihara et al. constructed a
smooth pseudo motion by using optical flows as silhouette
motion features, then the smooth pseudo motion was
utilized to match gaits from different people (Makihara
et al. 2012). Lam et al. proposed a new gait representation,
namely gait flow image (GFI), which further improved the
accuracy of gait recognition (Lam et al. 2011). Hu et al.
proposed a novel incremental framework based on optical
flow, which could greatly improve the usability of gait
traits in video surveillance applications (Hu et al. 2013).
Other appearance-based methods are based on silhouette
sequences (Makihara et al. 2006; Muramatsu et al. 2015;
Sarkar et al. 2005; Tao et al. 2007). For example, Makihara
et al. proposed a method of gait recognition from various
view directions using frequency-domain features and a
view transformation model (Makihara et al. 2006). Sarkar
et al. introduced the HumanID gait challenge problem
for providing a measure progress and characterizing the
properties of gait recognition (Sarkar et al. 2005). Tao et
al. focused on the representation and pre-processing of
appearance-based models for human gait sequences and
presented Gabor gait and tensor gait representations to
further enhance their abilities for recognition tasks (Tao
et al. 2007).

Recently, deep learning based gait recognition starts to
replace traditional gait recognition. The Siamese convolu-
tional neural network (SCNN) based gait recognition was
proposed in Zhang et al. (2016) to automatically extract dis-
criminative gait features for person re-identification. Feng et
al. presented a novel feature learning method for gait recog-
nition, which could extract body joint heatmap for each
frame by exploiting pose estimation method and model the
high level motion feature in the heatmap sequence (Feng
et al. 2016). Shiraga et al. designed GEINet for gait recog-
nition, which generated a set of similarities to the individual
subjects (Shiraga et al. 2016). Wu et al. focused on cap-
turing the co-occurrences and frequencies of features for
better matching, and obtained excellent performances for
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gait recognition (Wu et al. 2015). Castro et al. regarded per-
son identification in video as gait recognition and learned
high-level descriptors from low-level motion features (i.e.,
optical flow components) by using CNN (Castro et al.
2016). Wu et al. presented a CNN-based method via sim-
ilarity learning by deep convolutional neural networks for
gait recognition. It could automatically learn to recognize
the most discriminative changes of gait features (Wu et al.
2017).

In summary, existing methods provide a avenue for gait
recognition. However, they are extremely hard to capture the
subtle periodic information of different gaits. In addition,
recognition accuracy will be seriously affected when facing
with the unaligned gait sequences in gait cycles.

3D Convolutional Neural Networks

3D CNN (Tran et al. 2015) allows the network to learn
features from both the spatial and temporal dimensions,
which can capture the motion information in video. 3D
CNN have been successfully applied in action recognition
(Cao et al. 2017; Ji et al. 2013; Varol et al. 2016; Tran
et al. 2015; Yan et al. 2014), and action detection (Gao
et al. 2017; Hou et al. 2017; Xu et al. 2017; Yan et al.
2014; Zolfaghari et al. 2017). For example, 3D CNN
with small 3×3×3 convolution kernels was employed for
capturing the appearance and motion information encoded
in video streams simultaneously (Gao et al. 2017; Ji et al.
2013; Tran et al. 2015). Cao et al. employed selective
convolutional layer activations of 3D CNN to form a
discriminative descriptor under the guidance of body joint
positions, then the video feature was used for human

action recognition (Cao et al. 2017). Xu et al. introduced
a Region Convolutional 3D Network (R-C3D), which
used a three-dimensional fully convolutional network to
generate candidate temporal regions containing activities
and classified selected regions into specific activities (Xu
et al. 2017). Hou et al. proposed a Tube Convolutional
Neural Network (T-CNN) which was an end-to-end deep
network for action detection (Hou et al. 2017). It could
recognize and localize action based on 3D convolution
features in videos. Zolfaghari et al. designed a network
architecture based on C3D network for action recognition
that computed and integrated the most important visual cues
: pose, motion, and the raw images (Zolfaghari et al. 2017).

In summary, compared to the above approaches, our
proposed work aims to combine the spatial and temporal
gait sequence information for gait recognition.

Deep Learning for Gait Recognition

We begin with going through the entire process of the gait
feature learning framework. As illustrated in Fig. 2, the
proposed approach for gait recognition consists following
components. Firstly, we combine the raw sequence of
surveillance images into GEIs, which are exploited as
the input of the deep neural network. Instead of the
conventional CNN, we use Siamese network, which can
simultaneously minimize the distance between similar
subjects and maximize the distance between dissimilar
pairs, to learn sufficient spatial feature representations
of gait for human identification. Secondly, the original
walking sequences in one gait period are fed into the

Fig. 2 The framework of the proposed spatial-temporal gait feature learning approach
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fine-tuned C3D architecture to extract discriminative
periodic temporal feature. Similarly, the Siamese neural
network is utilized to learn sufficient temporal feature
representations of human gait based on pairwise gait
sequential frames. After that, the well-learned GEI-
based spatial feature and C3D-based temporal feature are
combined as the joint feature to represent human gait.
Lastly, the concatenated spatiotemporal gait features are
fused by NFST to be embedded into a discriminative
latent null space. Finally, the final human recognition is
made by comparing the Euclidean distances (i.e., matching
scores) between the feature vectors of gallery and probe gait
sequences in the null space. In the following section, we will
describe each component of our method in detail.

GEI-based Spatial Information

For one sequence of human gait recorded by surveillance
camera, we can extract the properly aligned silhouette of
human (Boykov and Jolly 2001; Liu et al. 2013) and average
them into the GEI representation. Here, we use GEI as
it represents a human motion sequence in a single image
while preserving part temporal information. In addition, this
averaging operation cannot only well maintain the original
information of the gait sequences, but also be robust to
incidental silhouette errors in individual image. Therefore,
GEI is popular applied in various gait analysis tasks (Hu
et al. 2011; Iwama et al. 2012).

Some GEIs belonging to different subjects are shown
in Fig. 3. When given a size-normalized and horizontal-
aligned human walking binary silhouette sequence
I (x, y, t), the gray level GEI G(x, y) is obtained by Eq. 1,

G(x, y) = 1

N

N∑

t=1

I (x, y, t), (1)

where N is the number of frames in one complete cycle
of the sequence, t is the frame number of the sequence, x

and y are values in the 2D image coordinate. After that, the

computed GEIs are fed into our deep architecture to further
learn the gait features.

Siamese Neural Network

The Siamese network was first introduced in Chopra et al.
(2005) and Bromley et al. (1993) to be applied to face and
signature verification tasks. The main idea of the network
is to learn a function that maps input patterns into a latent
space where similarity metric to be small for pairs of the
same objects, and large for pairs from different ones. For
the gait recognition task, we employ SCNN as the following
reasons: 1) metric learning are capable of learning generic
features useful for making predictions about unknown class
distributions even when very few examples from these new
distributions are available; and 2) Siamese network is best
suited for verification scenarios where the number of classes
is very large, and/or examples of all the classes are not
available at the time of training. Definitely, gait recognition
is one of such verification scenarios.

Network Architecture for Pairwise GEI Training As shown
in Fig. 4, the Siamese neural network designed for GEI-
based spatial feature training contains two parallel CNN
architectures, which of them consist of two parts: 1) two
convolution layers and max-pooling layers, and 2) three
fully connection layers. This network accepts inputs of
size 128×88×3 pixels. Using shorthand notation, the full
architecture of each branch is C(20, 5, 1)-N -P -C(50, 5, 1)-
N-P -FC(500)-FC(10)-FC(2), where C(d, f, s) indicates
a convolutional layer with d filters of spatial size f × f ,
applied to the input with stride s. FC(n) is a fully-connected
layer with n nodes. All max-pooling layers P pool spatially
in non-overlapping 2×2 regions and all normalization layers
N use the same parameters: n = 5, alpha = 10−4, and
beta = 0.75. The final feature output layers are connected
to a contrastive loss layer.

Contrastive Loss For gait recognition, we want to learn a
nonlinearly function which maps gait sequences to points in

Fig. 3 Some GEIs of different
subjects in the OU-ISIR LP
dataset (Iwama et al. 2012) in
terms of view point 55◦, 65◦,
75◦, and 85◦
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Fig. 4 The architecture of GEI-based spatial feature learning framework with Siamese neural network

a low dimensional space. Moreover, it makes positive pairs
close enough, whereas negative pairs are far away at least
by a margin. Therefore, we apply the contrastive loss layer
to connect the two branches in the network.

Mathematically, considering a pair of GEIs x1 and x2, let
y be a binary label of the pair, y = 1 if the images x1 and x2

belong to the same subject (i.e., “genuine pair”) and y = 0
otherwise (i.e., “impostor pair”). W is the shared parameter
matrix throughout the Siamese architecture which needs to
be learned. We can use W to map x1 and x2 into SW(x1)

and SW(x2), which are the two points in the latent low-
dimensional space. Then the distance EW(x1, x2) between
x1 and x2 can be measured by:

EW(x1, x2) = ||SW(x1) − SW(x2)||22. (2)

We can define the contrastive loss function as follows:

L(W) =
P∑

i=1

L(W, (y, x1, x2)
i), (3)

L(W, (y, x1, x2)
i) = (1 − y) · max(m − EW(x1, x2)

i , 0)

+y · EW(x1, x2)
i ,

(4)

where (y, x1, x2)
i is the i-th pair, which is composed of a

pair of GEIs with corresponding label y, P is the number of
the training pairs. The positive number m can be interpreted
as margin. Then the total loss is the sum of all gait sequence
pair losses.

Network Training We consider the gait recognition as
binary classification. Training data includes gait sequence
pairs and label. In the implementation, the training set
is selected from OULP-C1V1-A-Gallery (Iwama et al.
2012) dataset, with 20,000 similar GEI pairs and randomly
selected 20,000 dissimilar pairs. In the training stage, the

two branches of the network will be optimized simultane-
ously with the weight sharing mechanism. Pairwise images
with similar or dissimilar labels separately entrance the two
CNNs. Then the output of the CNNs are combined by the
contrastive layers to compute the contrastive loss. After
that, the back-propagating with contrastive loss is used to
fine-tune the model.

Our training algorithm adopts the mini-batch stochastic
gradient descent for optimizing the objective function. The
training data is divided into mini-batches. Training errors
are calculated upon each mini-batch in the contrastive
loss layer and backward propagated to the lower layers,
and network weights are updated simultaneously. We use
the “step” learning rate policy. We initialize the learning
rate to 10−4 and gamma to 10−1. Momentum and weight
decay are set to 0.9 and 0.0005 respectively. The only
tuned parameters are the hidden vector size, learning rate
and margin for the contrastive loss function (see Eq. 4).
As positive pairs and negative pairs have different data
distribution, they can bring about data imbalance and
overfitting. To avoid these problems, we randomly dropout
50% neurons of the last fully-connected layer in the training
process. With more rounds over the training data, the model
is trained until it converges.

Spatial Feature Extraction In the feature extraction stage,
we discard the Siamese architecture and contrastive loss
layer. We send the query GEI into one of the CNNs, then
compute the feed-forward network based on the matrix
multiplication for one time to extract features. The whole
scheme will be very efficient. The spatial information of
all gallery and probe gait sequences are extracted and
mapped using the above feature extractor. In the following
experiments, we denote the spatial feature representation as
“GEI.SCNN”.
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C3D-based Temporal Information

In this subsection, we elaborate steps for learning and
extracting C3D based temporal gait features. As shown in
Fig. 5, we firstly try to extract motion features from the input
gait video by fine-tuning the 3D CNN on the pre-trained
C3D model. Next, we design a Siamese neural network
specifically for the above C3D feature for automatically
learning the periodic features of gait sequences. Finally,
with the well-trained SCNN, we can extract the final C3D-
based temporal information for better human identification.

Fine-Tuning Classifier for Capturing Sequential Information
3D CNN (Ji et al. 2013; Tran et al. 2015) is well-suited
for spatiotemporal gait feature learning because 1) in 3D
CNN, convolution and pooling operations are performed
spatio-temporally. Conversely, in 2D CNN they are done
only in spatial space, which lacks ability to capture temporal
information from continued frames; and 2) the periodic
motion is the most significant difference between the gait
recognition and the traditional action recognition task while
the procedure of GEI’s computation is often accompanied
by the loss of temporal and periodic information in gait
sequences. Hence, only 3D CNN preserves the temporal
information of the input signals resulting in an output
volume. Therefore, we adopt the C3D architecture as
described in Tran et al. (2015) to model the temporal motion
and extract more discriminative temporal features for better
gait recognition.

To capture the motion information of gait sequences, we
select the C3D-based ResNet-18 (He et al. 2016), which
did exceptionally well in video classification, and fine-
tune from their learned representations on the currently
largest video classification benchmark: Sports-1M dataset
(Karpathy et al. 2014). We only change the 487 label output
in Sport-1M categories to the number of subjects in the
gait dataset. Specifically, inspired by Tran et al. (2015), we
split every gait video into 16-frame clips with an overlap

of 8 frames. Clips are resized to have a frame size of
128×171×3 pixels. In the fine-tuning stage, we randomly
crop input clips into 128×171×16 crops for spatial and
temporal filtering. We also horizontally flip them with 50%
probability. Fine-tuning is done by SGD with mini-batch
size of 50 examples. Initial learning rate is 0.001, and
is divided by 2 every 150K iterations. The optimization
is stopped at 1.9M iterations. After that, we extract C3D
features: pooling5 for each clip. The features for one
subject’s gait sequence are computed by averaging the clip
features separately, followed by an L2 normalization. The
fine-tuned model can efficiently capture the discriminative
features of human gait frames, which are robust to viewpoint
changes. The features are used as the input of the SCNN
for further training. Consequently, we will process each gait
sequence with the fine-tuned ResNet-18 model to obtain
gait sequence feature vectors.

C3D Feature Learning based on SCNN After obtaining
C3D features for each gait sequence, the target for
gait recognition is to retrieve a set of matching gallery
gait sequences features for a given query gait sequence
feature. In particular, in the field of gait recognition,
the number of categories can be very large, with only
a few examples per category. Therefore, we design a
Siamese neural network for learning subtle C3D motion
features. Using shorthand notation, the full architecture
of each parallel network is FC(512)-FC(256)-FC(128)-
FC(64)-dropout (0.7)-Output (2), where FC(n) are fully-
connected layers with n nodes and Output (2) are the
feature output layers which are connected to a contrastive
loss layer.

Our proposed SCNN for C3D feature learning takes pairs
of gait sequences feature vectors as inputs, and maps each
feature vector into a latent feature space, which are then
compared using Euclidean distance. In the implementation,
we randomly select two sequences belonging to the same
identity as positive pairs, whereas we randomly select two

Fig. 5 The architecture of C3D-based temporal feature learning framework with Siamese neural network
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sequences belonging to the different identities as negative
pairs. Specifically, given a gait sequence pair (s1, s2), let
y ∈ [0, 1] be a binary label of the pair. We denote y = 1
for indicating that s1 and s2 belong to the same identity
and y = 0 for indicating that they belong to the different
identities. Following the “Siamese Neural Network”, we use
all the positive pairs and randomly select the same number
of negative pairs as training data for training our network.

Temporal Feature Extraction In the feature extraction stage,
given a probe/gallery gait sequence, we firstly extract the
motion feature vector from the fine-tuned C3D model.
Then, we feed the feature vector into one of the network
from SCNN, and compute the feed-forward network for
one time to convert the original C3D feature into a new
latent space. In the following experiments, we evaluate both
feature representations from FC(512) and FC(256), which
give better performance comparing with the activation
from other fully-connected layers. We denote the temporal
feature representation as “C3D.SCNN” in our experiments.

NFST-based Spatial-Temporal Information Fusion

A simple scheme to fuse the GEI-based spatial feature and
the C3D-based temporal feature is directly concatenating
as an unified feature vector. However, it cannot effectively
integrate the complementary spatial and temporal infor-
mation and is extremely hard to obtain the view-invariant
description which occurs frequently in the real world human
identification scenario. The NFST was first introduced to
address the small sample size problem in face recognition
(Guo et al. 2006). Zhang et al. (2016) proposed a Kernalized
NFST for person re-identification by mapping the multiple
features into a discriminative null space and significantly
outperforms the state-of-the-art methods.

In this paper, we propose a Null space based Spatial-
Temporal gait feature (NuSTG) to extract effective and
robust representation for gait recognition. The proposed
NFST fusion method can take advantage of the two kinds of
gait features, which respectively capture different aspects of
information from gait sequences, i.e., spatial and temporal
features. Firstly, these two types of features, Fs and Ft , are
extracted from the all probe and gallery gait videos and
concatenated to obtain the original spatiotemporal feature
as F = [Fs, Ft ]. Formally, the training features F are
kernelized by kernal function �(·) to obtain �(F). Then,
the projection matrix W of discriminative null space is
learned by NFST on �(F) as in Zhang et al. (2016). We
aim to learn the optimal projection matrix W so that each
column, denoted as w, is an optimal discriminant direction
that maximizes the Fisher discriminant criterion:

J (w) = w�Sbw

w�Sww
, (5)

where w denotes each column in W , Sb is the inter-class
scatter matrix and Sw is the intra-class scatter matrix. It
meets the following two constrains, i.e., zero intra-class
scatter and positive inter-class scatter:

w�Sww = 0, (6)

w�Sbw > 0. (7)

As shown in Fig. 2, with W , we can learn a discriminative
null space where the training data of the same identities are
collapsed into one single point, resulting in C points in the
space, where C is the number of categories. The original
features F can be mapped into a latent metric space in which
the distances of features from the same object are much
smaller than those of features from different objects.

Experiments

Dataset and Experimental Setting

In our experiments, we evaluate the proposed gait recog-
nition framework on the OULP-C1V1-A dataset from the
OU-ISIR LP gait benchmark (Iwama et al. 2012). Recently,
there are several large-scale datasets (Sarkar et al. 2005;
Yu et al. 2006) have been built for gait-based human iden-
tification or attribute classification. Compared with above
datasets, OU-ISIR LP dataset has the following proper-
ties which make it a valuable and challenging dataset for
gait-based human identification. First of all, OU-ISIR LP
contains largest number of subjects with a wide age and an
almost balanced gender distribution in the world. Moreover,
the dataset records two sequences for each subject: probe
(i.e., query) sequence and gallery (i.e., source) sequence.
Such standard directory structure of gallery and probe offers
test bed for fairly algorithm comparison. The sequences
are further constituted by silhouette images, which are nor-
malized into 128×88 pixels. Some examples of the dataset
can be found in Fig. 3. In addition, each sequence is
divided into 4 slices based on the observation angles (55◦,
65◦, 75◦, and 85◦), which makes the dataset can be used
for both inter-view and intra-view human identification
task.

In this paper, we firstly compare different gait-based
methods on human identification within the same obser-
vation angle (i.e., intra-view human identification). Then
we evaluate state-of-the-art algorithms on inter-view human
identification task, which is more challenging. The crite-
ria for evaluating the methods is the rank-1 and rank-5
identification rates, which denote the percentages of correct
subjects out of all the subjects appearing within the first and
fifth ranks, respectively.
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Evaluation on Intra-View Human Identification

To begin with, we evaluate nine gait recognition approaches
for intra-view identification task. The details of approaches
are described as follows.

1. GEI Template. The conventional GEI based template
matching strategy (Iwama et al. 2012).

2. FDF Template. FDF is generated by applying a
Discrete Fourier Transform of the temporal axis to the
silhouette images in one gait cycle (Iwama et al. 2012).

3. HWLD. It is the histogram of weighted local directions
extracted from the GEIs (Sivapalan et al. 2013). Note,
the authors of Sivapalan et al. (2013) only tested their
HWLD method in near-profile view set (A-85).

4. GEI.fine-tuned. It is conventional 2D CNN-based
feature learning method fine-tuned from the pre-
trained AlexNet network (Krizhevsky et al. 2012).
As in Zhang et al. (2016), GEI.fine-tuned took the
activations from the first fully connected layers as
feature representations to identify the same person.

5. GEI.SCNN. As the previous work introduced in Zhang
et al. (2016), GEI.SCNN method adopted Siamese
convolutional neural network as feature extractor for
GEIs. The output activation of the first fully-connected
layer (500-D) is extracted as the GEI-based spatial
feature of input gait sequence.

6. C3D.fine-tuned. To evaluate original temporal
features extracted by 3D CNN, we directly use
the ResNet-18 (He et al. 2016) network to fine-
tune the pre-trained C3D model on the Sport-1M
dataset (Karpathy et al. 2014). As discussed in
“C3D-based Temporal Information” , the fine-tuned
C3D model is employed as a feature extractor for high-
level attributes. At last, we obtain a 512-D feature from
the pooling5 layer of the neural network to represent
the temporal feature of gait sequence.

7. C3D.SCNN. After obtaining C3D.fine-tuned feature
vector, we attempt to train a Siamese neural net-
work based on C3D feature. Different from GEI-
based SCNN, C3D-based SCNN only consists two
branches of MLP, but without convolutional layers.
We discussed details of the network architecture in
“C3D-based Temporal Information”. During testing,
the feature is extracted from the first fully-connected
layer as a 512-D vector.

8. STG (GEI.SCNN+C3D.SCNN). We directly concate-
nate the GEI.SCNN based spatial feature (500-D) and
C3D.SCNN temporal feature (512-D) to obtain the
Spatial-Temporal Gait (STG) feature vector (1012-D)
for gait-based human identification task.

9. NuSTG (GEI.SCNN+C3D.SCNN). The proposed
method for training Spatial-Temporal Gait features

which concatenates the GEI.SCNN feature and
C3D.SCNN feature within the Null space by NFST.
We call this method NuSTG.

Table 1 shows the comparison results of our approach
and state-of-the-art gait recognition methods. As we can see,
the deep learning based method is better than hand-crafted
feature based techniques in all test cases and achieves
the state-of-the-art performance. Compared to GEI, FDF
and HWLD, spatial and temporal information are able to
automatically learn commendable features from the given
GEIs and gait sequences, which obviously improve the
identification rate. Furthermore, compared with traditional
CNN-based method, our Siamese network based method
also achieves much better accuracy because its distance
metric learning architecture can well solve the verification
scenario of gait recognition based human identification.
Some visual example results of the proposed framework on
the OULP-C1V1-A dataset are shown in Fig. 6. From these
examples, cascade convolutional architecture of Siamese
network has ability to capture the massive complexity
structure around several ambiguous regions such as human
neck, hip and shoulder. Compared with spatial and temporal
feature, we can see that on rank-1 results, the spatial feature
is better. Conversely, the temporal feature is better on rank-
5 results. Compared with two different fusion methods, the
STG is similar with spatial features, which cannot well
combine the spatial-temporal information. Finally, the null
space based fusion method NuSTG achieves comparable
results on all the degrees, which demonstrates that this
fusion strategy can holistically exploit the complementary
nature of spatial-temporal information.

Nonetheless, compared with inter-view human identifi-
cation, the intra-view cases are easier. All the proposed
methods can well solve this problem. Next, we will compare
all methods on the inter-view human identification, which
can observably demonstrate the power of the proposed
NFST based fusion method.

Evaluation on Inter-View Human Identification

For gait-based human identification, the changes in view
between query gait sequences and source samples occurs
frequently in the real-world human identification scenario.
Therefore, we further verify the robustness of our proposed
methods in inter-view gait recognition task. Here is
the details of different state-of-the-art inter-view gait
recognition methods.

1. AVTM. The Arbitrary View Transformation Model
(AVTM) was particularly designed for gait-based
human identification with inter-view matching by
applying an extra 3D gait volume for training view
transformation model. The AVTM method had several
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Table 1 Performance comparison of different methods in term of the rank-1 and rank-5 identification rates on intra-view gait recognition. The
bold values indicate the best accuracy, and the hyphens (--) denote out of scope

Methods Rank-1 Recognition Rate (%) Rank-5 Recognition Rate (%)

A-55 A-65 A-75 A-85 A-55 A-65 A-75 A-85

Baseline:

GEI template (Iwama et al. 2012) 84.70 86.63 86.91 85.72 92.39 92.84 92.78 93.01

FDF template (Iwama et al. 2012) 83.89 85.49 86.59 85.90 91.53 92.81 92.88 92.83

HWLD (Sivapalan et al. 2013) -- -- -- 87.70 -- -- -- 94.70

Spatial feature:

GEI.fine-tuned (Zhang et al. 2016) 73.96 76.71 77.87 78.82 86.64 88.67 89.39 90.09

GEI.SCNN (Zhang et al. 2016) 90.12 91.14 91.18 90.43 94.98 95.90 95.92 95.97

Temporal feature:

C3D.fine-tuned 79.95 84.67 85.95 89.07 93.74 95.25 96.11 96.98

C3D.SCNN 82.65 86.63 87.34 90.37 94.63 95.92 96.67 96.98

Fusion:

STG 82.68 86.63 87.36 90.37 94.63 95.92 96.67 96.98

NuSTG 85.21 89.36 89.66 90.03 92.66 95.15 95.25 95.60

extended versions including AVTM PdVS (Muramatsu
et al. 2015), AVTM (Muramatsu et al. 2015) and
woVTM (Muramatsu et al. 2015).

2. RankSVM. RankSVM (Martı́n-Félez and Xiang 2012)
was a typical representative metric learning based
approach aiming at gait recognition task with covariate
variations especially for inter-view matching.

Fig. 6 Visual searching results on intra-view human identification
task. Red solid bounding box indicates true match

3. GEI.SCNN. As introduced before, GEI.SCNN (Zhang
et al. 2016) method adopted Siamese convolutional
neural network as feature extractor for GEIs which also
can well handle the inter-view human identification
problem.

As shown in Table 2, the performance improvement
of our framework is consistent and stable, i.e., all the
inter-view test cases are improved compared to other
methods. Note that, the AVTM and RankSVM methods
only selected 1,912 subjects in OU-ISIR LP dataset, whose
data were captured for evaluation by calibrated cameras
for testing. Differently, we evaluate our methods on the
whole 3,835 persons set, which is more difficult. The
results demonstrate that the proposed method is quite
robust to view-change variations. The reason is that in
the training stage, we send both intra- and inter-view
pairwise gait samples into the Siamese neural network. In
this way, we can train the similarity metric to be small
for pairs from same subjects, and large for pairs from
different subjects, which enhance the robustness of the gait-
based human identification method under the view-change
condition. Compared with spatial features, the temporal
features achieve much better performance on the inter-
view human identification. The results demonstrate that
compared with temporal information, spatial information
are more sensitive to the view point changes. Differently,
as the temporal features mainly take advantage of motion
information, it is more robust. Moreover, the proposed
NFST based spatial-temporal fusion method significantly
outperforms all the other methods, especially better than
the early fusion strategy. The results show that the metric
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Table 2 Performance
comparison of different
methods in term of the rank-1
identification rates on
cross-view gait recognition.
The bold values indicate the
best accuracy, and the hyphens
(--) denote out of scope

Probe Gallery A-55 A-65 A-75 A-85

A-55 AVTM PdVS (Muramatsu et al. 2015) -- 76.20 61.45 45.50

AVTM (Muramatsu et al. 2015) -- 77.72 64.54 42.69

woVTM (Muramatsu et al. 2015) -- 53.61 14.28 8.94

RankSVM (Martı́n-Félez and Xiang 2012) -- -- 19.98 12.60

GEI.SCNN (Zhang et al. 2016) -- 65.76 32.92 19.48

C3D.fine-tuned -- 78.25 71.50 64.02

C3D.SCNN -- 81.22 75.10 67.41

STG -- 81.22 75.10 67.44

NuSTG -- 87.80 87.39 87.20

A-65 AVTM PdVS (Muramatsu et al. 2015) 75.99 -- 77.09 65.48

AVTM (Muramatsu et al. 2015) 75.63 -- 76.36 62.76

woVTM (Muramatsu et al. 2015) 49.84 -- 68.62 38.18

RankSVM (Martı́n-Félez and Xiang 2012) -- -- 62.71 36.66

GEI.SCNN (Zhang et al. 2016) 72.58 -- 78.54 51.83

C3D.fine-tuned 77.44 -- 81.31 77.01

C3D.SCNN 79.68 -- 84.24 79.84

STG 79.68 -- 84.24 79.87

NuSTG 84.84 -- 88.99 88.83

A-75 AVTM PdVS (Muramatsu et al. 2015) 60.25 76.20 -- 76.52

AVTM (Muramatsu et al. 2015) 59.88 74.90 -- 76.31

woVTM (Muramatsu et al. 2015) 13.54 67.63 -- 77.72

RankSVM (Martı́n-Félez and Xiang 2012) 15.49 58.47 -- 60.83

GEI.SCNN (Zhang et al. 2016) 39.13 78.30 -- 81.22

C3D.fine-tuned 70.53 81.19 -- 85.29

C3D.SCNN 72.37 83.61 -- 85.84

STG 72.37 83.63 -- 85.84

NuSTG 83.89 88.30 -- 89.54

A-85 AVTM PdVS (Iwama et al. 2012) 40.48 60.62 73.12 --

AVTM (Iwama et al. 2012) 40.17 61.87 74.32 --

woVTM (Iwama et al. 2012) 7.16 33.42 77.14 --

RankSVM (Martı́n-Félez and Xiang 2012) 10.41 34.41 57.79 --

GEI.SCNN (Zhang et al. 2016) 19.45 44.93 71.39 --

C3D.fine-tuned 59.42 68.86 74.09 --

C3D.SCNN 60.71 70.08 75.82 --

STG 60.71 70.11 75.82 --

NuSTG 74.04 77.75 79.02 --

learning can markedly make the distances of features from
the same object become much smaller than those of features
from different objects in the new null space.

Conclusions

In this paper, we have investigated on leveraging deep
learning method to extract robust and discriminative spatial-
temporal gait feature for human identification. In the end-
to-end framework, we utilize the competitive GEI and

C3D presentation as the input of network to capture the
major human shapes and body changes during walking.
Furthermore, we holistically exploit the Siamese neural
network to learn effective gait features which directly
computs the similarity between two human gaits with
parallel neural network architecture. More important, we
propose to use the NFST to combine the GEI and C3D
features into the null space to learn more comprehensive
spatial-temporal gait information. The experimental results
on the benchmark dataset demonstrate the effectiveness and
efficient of our proposed method. In the future, we will try
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to combine the gait data acquisition, preprocessing, cycle
detection, feature extraction, classification and matching
into one end-to-end network.
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